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Abstract

This paper introduces a new neural-fuzzy technique combined with genetic algorithms in the prediction of permeability in
petroleum reservoirs. The methodology involves the use of neural networks to generate membership functions and to approximate
permeability automatically from digitized data (well logs) obtained from oil wells. The trained networks are used as fuzzy rules and

hyper-surface membership functions. The results of these rules are interpolated based on the membership grades and the parameters
in the defuzzification operators which are optimized by genetic algorithms. The use of the integrated methodology is demonstrated
via a case study in a petroleum reservoir in offshore Western Australia. The results show that the integrated neural-fuzzy-genetic-

algorithm (INFUGA) gives the smallest error on the unseen data when compared to similar algorithms. The INFUGA algorithm is
expected to provide a significant improvement when the unseen data come from a mixed or complex distribution. # 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

A petroleum reservoir is a volume of porous
sedimentary rock which has been filled with a sub-
stantial amount of hydrocarbons, such as crude oil and
natural gas. Reservoir properties are a set of parameters
which are used to characterize the spatially varied
geological information. Permeability, porosity, and fluid
saturation are the three major reservoir properties in
petroleum engineering which are used to determine the
economic reserves and production rates of such hydro-
carbons.

The determination of reservoir properties is a complex
problem because laboratory-measured properties on
rock samples (‘‘cores’’) are only available in limited
and isolated well locations and/or intervals. There is a
great demand to develop correlation models to relate the
properties to other measures which are relatively
abundant. One example of such kinds of measures is

‘‘well logs’’ which are a series of multi-type digital
measurements along the vertical depth of drilled wells.
These models are used to transform the well log data to
the reservoir properties at locations where no cores are
obtained.

In more general terms, the problem is to predict the
system output responding to a new input vector based
on past observations (or training data) of the system. In
this paper, the system output is a scaler. The solution to
the problem uses three basic domains of information:
input data (e.g. well logs), output data (e.g. per-
meability) and a transfer function. The domain of the
problem can be expressed in its most generalized
form by

y ¼ f ðX Þ þ e; ð1Þ
where X and y represent the vector of inputs to the
system and the desired output, respectively, f ð�Þ is a
function of the domain and e ¼ yÿ ŷ is the estimation
error where ŷ ¼ f ðXÞ. The goal of the function design is
to minimize the total jejor e2 for all training data.

There are many algorithms for solving this problem.
Techniques such as multiple linear statistical regression
(Jian et al., 1994), neural networks (Wong et al., 1995;
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Mohaghegh et al., 1996a), and fuzzy-neural networks
(Huang et al., 1996) are common. These algorithms,
however, do not make use of the uncertain knowledge
generally available within the problem domain.

Zeng and Singh (1996) used fuzzy logic to emulate the
flexibility of human reasoning processes and to draw
conclusions from imprecise and incomplete information,
thus ‘‘capturing the richness of natural language’’. This
method of reasoning is known as fuzzy approximate
reasoning, which is a rule-based system of inference in
which a fuzzy conclusion is deduced from a collection of
fuzzy premises. It is very much suitable for representing
uncertain knowledge (Kasabov, 1996). Fuzzy modeling
can model highly complex nonlinear systems, such as
multi-input and multi-output problems. It has also been
applied successfully in geosciences. One example is the
work done by Fang and Chen (1997). They used fuzzy
modeling to improve the capability of making both
linguistic and numeric predictions based on qualitative
knowledge and semi-quantitative data in geology. The
other example is from Gedeon et al. (1997). They
incorporated fuzzy IF2THEN rules into neural net-
works to interpolate the reservoir properties.

The major difficulty in fuzzy modeling is how to make
the decision on the parameters for the fuzzy membership
functions. The parameters are often specified by users,
either from their own experience or trial and error
exercises. In order to automate the process, an
optimization technique can be employed to minimize
the total error for all the given data. Genetic algorithms
(GAs) are popular (Micinney and Lin, 1994; Wang and
Elbuluk, 1996; Karr and Freeman, 1997) and become
increasingly important in geosciences (Fang et al., 1996;
Huang et al., 1998; Mohaghegh et al., 1996b).

GAs were first introduced in the field of artificial
intelligence by Holland (1975). These algorithms mimic
processes from the Darwinian theories of natural
evolution in which winners survive to reproduce and
pass along ‘‘better’’ genes to the next generation, and
ultimately, a ‘‘perfectly adapted’’ species is evolved.
Hence, the term ‘‘genetic’’ was adopted as the name of
the optimization. More details about GAs can be found
in Lucasius and Kateman (1993, 1994) and Goldberg
(1989).

The objective of this paper is to propose a new
methodology for predicting permeability from well logs
using our integrated neural-fuzzy-genetic-algorithm
(INFUGA). It is an assumption-free, model-free, and
adaptive estimator and is suitable for handling multi-
dimensional inputs and outputs. The methodology will
first be described step by step. The workings of the
method will be demonstrated via a case study in
Australia. The study uses well logs (multiple inputs) to
predict permeability (single output) in an oil well where
actual permeability values are available for performance
evaluation. Results and conclusions follow.

2. The methodology: INFUGA

The proposed methodology, INFUGA, consists of
five steps: (1) select appropriate well data sets; (2)
generate fuzzy rules by neural networks; (3) generate
hyper-surface membership functions by neural net-
works; (4) optimize defuzzification operator parameters
by genetic algorithms; and (5) interpolate fuzzy rules to
provide estimates. Fig. 1 displays the corresponding flow
chart for INFUGA. Our technique is novel in a number
of ways. These are, in the use of hyper-surface
membership functions, in the use of GAs to determine
defuzzification parameters in the way we have done, and
the subsequent use of interpolation. Of course, many
components of our technique are based on modifications
of techniques developed by others which are not novel in
their own right, for example fuzzy rule interpolation is a
well-known technique. Overall, our technique can also
be seen as an extension of that of Takagi and Hayashi
(1991) so that we use a GA-based learning method of
the defuzzification parameters.

2.1. Select appropriate well data sets

The decision on selecting appropriate data sets is
based on the spatial locations of the available data and
the spatial location of the single datum to be estimated
(we will henceforth refer to this as a ‘‘point’’). This, in
turn, depends on whether the geological setting of the
unknown point is similar to those of the available data.
The basic idea is to select training data with similar
distribution (statistical and geological) as the unknown
point. Expert knowledge is often required to make such
a decision because the data distribution of the unknown
point is generally not known before a core sample is
made.

The estimation of the permeability in an un-cored well
(which is a well with no core samples available) relies on
the input2output relations from the ‘‘nearby’’ cored
wells. Depending upon the complexity of the geology,

Fig. 1. INFUGA flow chart.
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the definition of ‘‘nearby’’, in practice, can range from
hundreds to thousands of meters. By taking into
account the spatial variability of the data sets from
different cored wells, each well data set can be used to
produce its own functional relation (fuzzy inference
rule) between well logs and permeability. All the rules
(data from different cored wells) can then be in-
terpolated to the un-cored well. This will be described
in the later sections.

2.2. Generate fuzzy rules by neural networks

This step first generates a standard backpropa-
gation neural network (Gedeon et al., 1997) using the
training set from each of the cored wells (assuming n of
them). The error function is defined as

Psi
j ðycij ÿ ŷcijÞ=si,

where ŷcij ¼ NNiðX c
ijÞ is the neural network per-

meability estimate using X c
ij (m dimensions), the jth

input vector (well logs) at the ith cored well and ycij is the
core permeability data (target output). The trained
neural network is then used to produce a fuzzy inference
rule

Rule i : IFX u 2 Ai THEN ŷui ¼ NNiðX uÞ;
i ¼ 1; . . . ; n;

ð2Þ

where X u is the un-cored input vector (test or unseen
data) and Ai ¼ fX c

ij : j ¼ 1; . . . ; sig is the crisp universe
of discourse of the inputs at the ith cored well. This is
equivalent to applying only neural networks to predict
properties from different relations obtained in different
wells (rules).

Our new algorithm uses Ai as a fuzzy set. This means
that all the rules could be fired depending upon the
degree of the hyper-surface membership of X u belong-
ing to each set. The next step will show how we obtain
the membership values.

2.3. Generate hyper-surface membership functions by
neural networks

The value of the hyper-surface membership
function can be defined as the output of the trained
neural network (Takagi and Hayashi, 1991). The
network is essentially a standard structure for
pattern classification with m input and n output
units. The training patterns become ðX c

ij ;Z
c
j Þ, where

Z c
j ¼ ðzc1j; . . . ; zcnjÞ is the target vector. The elements of

the target vector are

zckj ¼
1 if X c

kj 2 A1 [ � � � [ An;

0 otherwise;

(
k ¼ 1; . . . ; n; j ¼ 1; . . . ; sk:

ð3Þ

Thus, the network outputs are used as the hyper-surface
membership function values. For prediction purposes,
these values are

mkðX uÞ ¼ ẑckðX uÞ; k ¼ 1; . . . ; n; ð4Þ

where mk 2 ½0; 1� values are the fuzzy membership
grades which express the degree of membership of
X belonging to the kth cored well. These values are
to be used in the defuzzification operators.

2.4. Optimize defuzzification operator parameters by
genetic algorithms

Let ða1; . . . ; anÞ be a family of parameters to be
optimized. The permeability (defuzzified value) can be
obtained as the expected value of the parameterized
family of defuzzification operators

ŷcij ¼
Pn

k m
ak
k ðX c

ijÞNNiðX c
ijÞPn

k m
ak
k ðX c

ijÞ
; i ¼ 1; . . . ; n: ð5Þ

In conventional defuzzification, a1 ¼ � � � ¼ an ¼ 1. Filev
and Yager (1991) proposed the basic defuzzification
distributions (BADD) and assumed that a1 ¼ � � � ¼ an
but not necessarily equals one. Note that when
a1 ¼ � � � ¼ an ¼ 0, the estimate becomes the simple
average

Pn
i NNiðX uÞ=n. This is analogous to the neural

network approach pulling all the well data (independent
of well locations) into a single rule to produce an
estimate (Wong et al., 1995).

In this paper, the a1 ¼ � � � ¼ an assumption is
removed and different a values are allowed in the
defuzzification operators. The corresponding values are
optimized by GAs. The following fitness function is used
in this study

FðaÞ ¼ 1

1þ l
Pn

i ei þ ð1ÿ lÞ
Pn

i

Pn
j¼iþ1 jei ÿ ej j

; ð6Þ

where ei ¼
Psi

j ðycij ÿ ŷcijÞ
2=si, si is the number of

validation patterns available at the ith well and
l 2 ½0; 1� is a user-definable constant. If l ¼ 1, the
algorithm prefers to get the smallest error irrespective of
the significance of each fuzzy rule. If l ¼ 0, the
algorithm prefers to balance the errors from different
rules. The parameters a are optimized by maximizing
FðaÞ.

Note that the ai values in Eq. (5) indicate
the contribution of the fuzzy rule i to the
estimate. Since mi 2 ½0; 1�, small ai will give high
maji . This means, a smaller ai value will give a
higher weighting to the estimate from fuzzy rule i. In
other words, the input2output relation in rule i is
strong.
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2.5. Interpolate fuzzy rules to provide estimates

Using the well logs at the un-cored or test well, the
final permeability estimate is

ŷu ¼
Pn

k m
ak
k ðX uÞNNiðX uÞPn

k m
ak
k ðX uÞ : ð7Þ

3. Case study

3.1. Data descriptions

The data sets used in this study came from four oil
wells, namely 1, 2, 3 and 4 which were drilled in a
complex reservoir located at offshore Western Australia.
According to geological experts, all the wells were
drilled in a similar depositional environment. Hence, the
functional relation from one well can be used to infer the
relation in another well.

In each well, six well logs (n ¼ 6) and the correspond-
ing core permeability values are available. There are 152,
156, 115, and 140 measurements in each well, respec-
tively, at various depths. The well logs used for the
analyses were gamma-ray (GR), deep resistivity (LLD),
sonic travel time (DT), bulk density (RHOB), neutron
porosity (NPHI) and a rock-type (FACIES) log. The
first five recorded numerical measurements while the last
one represents the discrete groupings of the rock. All the
data used were normalized and became dimensionless.

The objective of the case study is to demonstrate the
workings of the proposed methodology for predicting
permeability from the six well logs. In order to evaluate
the performance of the methodology, well 4 was selected
as the test well where predictions were made through the
use of data from the other wells (123). The predictions
were then compared with the actual values. The
proposed methodology was also compared with other
prediction methods: neural networks only, conventional
defuzzification and BADD (Filev and Yager, 1991).

3.2. Neural networks and fuzzy rules

In this study, a standard three-layer feedforward
neural network was used to provide the fuzzy rules and
the hyper-surface membership functions. A separate
network was used in each of the three cored wells. The
network consisted of six inputs and one output. The
same number of hidden units was used for all the three
networks. The number of hidden units and the number
of learning iterations were determined by trial and error
based on the minimum error on the validation set, which
was formed by randomly picking 50% of the training
data. The remaining 50% of the training data were used
to train the network. Both the learning and momentum
constants were set at 0.5. In this example, three hidden
units produced the smallest error.

After training, three fuzzy rules were obtained. These
rules can be used separately to produce the permeability
values at the test well 4 (neural networks only). In this
case, different rules will provide different permeability
estimates. The rules can also be interpolated to the test
well, using the hyper-surface membership function
values mkðX uÞ, using the conventional defuzzification,
the BADD approach or the proposed INFUGA.

A similar analysis was done to optimize the network
configuration for predicting the mkðX uÞ values. Fig. 2
shows the membership function values (scaled to a total
of 100%) obtained in the three wells using the well 4
data (140 points). The vertical axis represents the scaled
membership values and the horizontal axis is the sample
number (sorted by reservoir depths). Note that 52% of
the well 4 data produced the highest membership
function values from the second fuzzy rule 2. This
indicates that well 4 data set has a similar distribution to
the well 2 data set.

3.3. Genetic algorithms

In this example, there were three parameters
ða1; a2; a3Þ which were required to be optimized by

Fig. 2. Hyper-surface membership function values (scaled) using well 4 data.
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genetic algorithms. Binary encoding was used. Each
individual parameter was linearly generated in [0,10] and
the bit-string length was set to i ¼ 32. Therefore, when
concatenating the three parameters, each of the indi-
viduals has a total bit string of 96 bits. The Karr and
Freeman (1997) relation was used for the parameter
mapping. In this study, l was set to 0.2. The population
size was 30 and the number of generations was 10,000.
The probability values for crossover and mutation
were 0.8 and 0.004 respectively. The final values
for ða1; a2; anÞ were (8.31, 0.16, 9.80) at maximum
FðaÞ. Since a2 is the smallest, a higher weighting will be
assigned to the fuzzy rule 2. This may indicate that the
input2output relations in well 2 are much stronger than
those embedded in the other wells.

For BADD, a similar GA optimization was done by
setting a1 ¼ a2 ¼ a3 ¼ 1. The optimum a value was 1.65.
Note that a1 ¼ a2 ¼ a3 ¼ 1 for the conventional defuz-
zification approach.

4. Results and discussion

Table 1 shows the comparison of the total sum of
error squares (TSS), for 140 data points at well 4 using
different algorithms: neural network approach using
Eq. (2), conventional defuzzification, BADD and
INFUGA. According to the minimum criteria in Eq.

(1), the INFUGA estimates were the best overall. The
percentage improvement and the ranking of the al-
gorithms are also shown. The worst results were from
the neural network techniques using rules 1 and 3.
The INFUGA predictions were 25 and 31% better,
respectively.

It is important to note that the fuzzy rule 2 gave the
second best results. INFUGA only showed slightly
better results (3%). This was because the data distribu-
tions from wells 2 and 4 were similar as displayed in
Fig. 2. That means neural networks give good per-
formance to the unseen data if they were trained by data
coming from the same or similar distribution. The
INFUGA technique is expected to provide a significant

Fig. 3. Scatter-plot of the actual values and predictions at well 4.

Table 1

Comparison of the total sum of error squares (TSS) at well 4 using

different algorithms. The percent improvement was referenced at

INFUGA

Algorithms TSS Percent

improvement

Rank

Neural network using rule 1 1.34 25 5

Neural network using rule 2 1.04 3 2

Neural network using rule 3 1.47 31 6

Conventional defuzzification 1.17 14 3

BADD 1.22 17 4

INFUGA 1.01 n/a 1
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improvement when the unseen data come from a mixed
or complex distribution. More studies will be conducted
in the future.

Comparing the fuzzy methods, the INFUGA tech-
nique was 14 and 17% better than the conventional
defuzzification and the BADD methods, respectively.
Setting a1 ¼ a2 ¼ a3 decreases the performance of the
estimator. Clearly, by removing this assumption, the
INFUGA estimator can approximate more complex
relations.

Fig. 3 shows the scatter-plots of the 140 predictions
versus the actual values for different methods. The
INFUGA technique gave the maximum correlation
coefficient (r2) of 0.71. Fig. 4 shows the results of the
INFUGA predictions and the actual (normalized)
permeability values in well 4. The predictions matched
very well with the actual values.

The performance of the INFUGA was excellent
compared with other neural-fuzzy methods. The pro-
posed method not only has the intrinsic advantages of
the neural-fuzzy techniques, but the parameters are also
optimized by genetic algorithms. The integrated ap-
proach improved the predictions by 3231%. This
adaptive technique is not limited to petroleum engineer-
ing problems, but can also be used in other engineering
areas. This is particularly useful when it is desirable to
incorporate interpretive knowledge based on a more
complex understanding of the data. The cost for
improving the performance is the CPU time for the
numerical optimization.

5. Conclusions

This paper introduces an integrated neural-fuzzy-
genetic-algorithm (INFUGA) to predict permeability
from well logs in a petroleum reservoir in Australia.
INFUGA is an improved version of our previous
neural-fuzzy techniques which optimized the parameters
in the defuzzification operators via genetic algorithms. It
is an assumption-free, model-free, and adaptive esti-

mator and is suitable for handling multi-dimensional
inputs and outputs. It does not require a structured
knowledge base. The only disadvantage is the additional
CPU time for the performance.

In the case study, the performance of the INFUGA
was excellent compared to the other neural-fuzzy
methods we tried. The comparison shows that the
integrated neural-fuzzy-genetic-algorithm (INFUGA)
provided the smallest error on the unseen data for our
data. The INFUGA technique is expected to provide a
significant improvement when the unseen data come
from a mixed or complex distribution. Our research in
this area is on-going.
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